The Proto-Elamite Script

ROBERT K. ENGLUND

The ideographic writing system conventionally called Proto-Elamite was developed and used in western and southern Persia at the end of the fourth through the beginning of the third millennium B.C.E., a historical phase generally considered to correspond to the Jemdet Nasr and the Early Dynastic I periods in Mesopotamia (Le Brun 1971; Damerow and Englund 1989: 1–4). The region of Persia designated “Elam” in later Mesopotamian cuneiform sources lent its name by association to the language spoken there; Old Elamite/Old Akkadian bilinguals employing the partially deciphered linear Elamite and Old Akkadian cuneiform date this language of unknown linguistic affiliation (Reiner 1969) no earlier than ca. 2300 B.C.E. “Proto-Elamite” is the name used for the writing system of the earliest documents from the region—texts on clay tablets which are assumed to represent a precursor of Old Elamite (Hinz 1975; Meriggi 1971: 184–220; André and Salvini 1989). The earlier language has not, however, been identified; the phonological structure of the archaic script is thus entirely unknown. However, contextual analyses and the formal similarity of Proto-Elamite documents to better-understood proto-cuneiform tablets from Mesopotamia dating to ca. 3200–3000 B.C.E. make possible a substantive assessment of the ideographic nature and the fields of application of the indigenous Persian writing system.

History of decipherment

Since the first archaic texts were discovered at the turn of the twentieth century, some 1500 Proto-Elamite tablets have been published, the great majority excavated at Susa on the Kerkha river east of Babylonia, but including in smaller numbers tablets found in sites reaching to the southeast across to Shahr-i Sokhta on the Afghanistan border (Damerow and Englund 1989: 1–2). The tablets are administrative documents, to the near total exclusion of either literary or lexical texts.

Syllabic sign readings adduced from an assumed link between Proto-Elamite and the ostensibly related linear Elamite (see above) have not led to successful decipherment of the archaic script. A preliminary graphotactical analysis of the Proto-Elamite texts has also met with only modest success (Meriggi 1975: 105, 1971: 172–84; Brice 1962–63: 28–33; Gelb 1975). To be sure, scholars have with mixed success established some graphic and semantic connections between Proto-Elamite and proto-cuneiform, the first writing stage of which predates that of Proto-Elamite by some 100 years (Langdon 1928: viii; Mecquenem 1949: 147; Gelb 1963: 217–20; Meriggi 1969: 156–63; Damerow and Englund 1989: 11–28). However, a lack of necessary philological tools, above all a dependable sign list purged of redundant sign variants, continues to hinder progress in this work.

Basic characteristics of Proto-Elamite script and texts

A preliminary study of the entire text corpus suggests that the Proto-Elamite sign repertoire was comparable to that of proto-cuneiform, using less than 1000 individual
Sexagesimal System S
Used to count discrete inanimate objects

Decimal System D
Used to count discrete animate objects, in particular domesticated animals and human laborers

Bisexagesimal System B
Used to count discrete grain products; objects noted with this system may, as in archaic Babylonia, belong to a rationing system

Bisexagesimal System B#
Derived from System B, used to count rations(? of an unclear nature

Capacity System C
Used to note capacity measures of grain, in particular barley; the small units also designate bisexagesimally counted cereal products

Capacity System C#,
Derived from C, possibly related to B#

Capacity System C"
Derived from C, graphically related to the Babylonian system for emmer

Area System A

FIGURE 14. Numerical sign systems attested in the Proto-Elamite text corpus (Damerow and Englund 1989: 18–30; the numbers above the arrows indicate how many respective units are replaced by the next higher unit). In the capacity system, the basic sign (middle column; = “1” in the systems qualifying discrete units) may have represented ca. 25 liters of grain.

Designation of the 1st shepherd
Designation of the 1st foreman
Designation of the 1st workmen in first gang

Designation of an institution
Designation of an institution
Designation of an institution

22 sheeps of 1st shepherd
9 sheeps of 2nd shepherd
18 sheeps of 3rd shepherd
16 sheeps of 4th shepherd
65 sheep

49 workmen

FIGURE 15. Proto-Elamite administrative accounts. Left: Account of four sheep herds (Scheil 1905, no. 212). The graphic form and the large numerical notations, as well as the association of the cross-shaped ideogram with other signs that bear a strong graphic resemblance to proto-cuneiform signs known to represent domestic animals (the circled cross and derived signs), make plausible the interpretation of this sign as ‘sheep and goats’. The fact that the signs are on the whole abstract forms may be suggestive either of a set of symbols commonly shared in Mesopotamia and Susiana for domestic animals prior to the inception of written documents (so-called tokens), or—and this seems more likely—of a defective borrowing of signs already in use in Urk (Schmandt-Besserat 1992; Damerow and Englund 1989: 53–55). Right: Account of seven labor gangs (Scheil 1923, no. 45). The sign for ‘workman’ is the most common sign used as a symbol qualifying Proto-Elamite names. All the names in a text may be introduced by this sign; for the most part, however, only the first entry of a text is (Damerow and Englund 1989: 53–55).

in lines from top to bottom. The first signs on a Proto-Elamite tablet generally express the purpose and acting person or institution of the text, followed by individual entries, without the formal arrangement of the tablet into the columns known in proto-cuneiform (see FIGURE 13). Each entry normally includes an ideographic notation representing persons/institutions or quantified objects or both, followed by a numerical notation. That all entries in Proto-Elamite texts seem to contain a numerical notation suggests they represent more the structure of a system of bookkeeping than the division of a spoken language into distinct sentences or comparable semantic units. Continuing analysis of the Proto-Elamite numerical systems (see FIGURE 14), which derived from the systems developed earlier in Mesopotamia, has been a powerful tool in recent semantic identifications of a number of signs and sign combinations, includ-

Bibliography